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Abstract 

Plasmodium falciparum (P.f) is a protozoan parasite responsible for the most severe and deadly form 

of malaria. The resistance of Pf to last resort antimalarial drugs has been reported, there is an urgent 

need to identify new therapeutic candidates for drug development. Advancements in bioinformatics 

technologies provide potential cost and time-effective solutions for predicting therapeutic candidates. 

Phosphatidylserine decarboxylase (PSD) is a member of the lyase family (more specifically, the 

carboxy-lyases), which cut carbon-to-carbon bonds. PSD catalyzes the decarboxylation of 

phosphatidylserine to generate phosphatidylethanolamine, which is a critical step in phospholipid 

metabolism in prokaryotes and eukaryotes. The model of PSD has not been previously characterized, 

but it is recognized as a structural pathway for the design of new potential inhibitors for developing 

future antimalarial drugs. Here we investigate and propose PSD as a promising new target for Pf and 

build his model to identify new potential inhibitors of this new therapeutic target. PSD was extracted 

from the Tropical Disease Research (TDR) Targets database, which facilitates the identification and 

prioritization of drugs and drug targets of neglected pathogens. The 3D structure of the target protein 

was predicted using the AlphaFold2 server and the ligands were extracted from the Zinc Database 

Chemical Library. Molecular docking was performed using Autodock-Vina. Ten PSD inhibitors were 

identified according to affinity docking score, which ranged from -8.5 to -8.3 kcal/mol and were 

consistent with the Lipinski rule of five. This study provides a promising building block for 

experimental studies in establishing novel antimalarial drugs. 

 

Keywords: Plasmodium falciparum, PhosphatidylSerine Decarboxylase, virtual screening, molecular 

modeling 

 

 

INTRODUCTION 

Malaria remains a major public health challenge, 

with 50% of the world's population still at risk of 

malaria infection [1]. There were an estimated 14 

million more malaria cases and 47 000 more deaths 

in 2020 compared to 2019, due to disruptions to 

services during the pandemic [2]. Sub-Saharan 

Africa remains the most affected part of the world, 

where approximately 95% of the global malaria 

burden is concentrated [1]. Children under five 

years of age, infants, and pregnant women are the 

most vulnerable to malaria and maintain the 

highest burden of infection [1]. 

 

Plasmodium falciparum is the most deadly and 

is the leading cause of death due to vector-borne 

diseases [3]. High morbidity and mortality rates 

associated with Pf malaria represent an enormous 
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burden to the health and economic well-being of affected countries [4]. Recently, considerable 

progress has been made in reducing malaria morbidity and mortality through intensive malaria control 

initiatives such as the use of antimalarial drugs, artemisinin-based combination therapies (ACTs), 

intensive distribution and use of insecticide-treated nets (ITNs), and the implementation of massive 

indoor residual spraying (IRS) campaigns [5]. However, these gains are threatened by widespread 

resistance of the parasite to antimalarial drugs and of the vector to insecticides. 

 

Although antimalarial drugs have been successful in mitigating epidemics in recent decades, 

clinical evidence of resistance to all commercial antimalarial drugs, including quinine, chloroquine, 

atovaquone, and ACTs, has been reported [6]. The rapid expansion of resistance to ACTs is moving 

beyond Southeast Asia and has reached Africa [7]. Faced with this spread of resistance, the discovery 

of new antimalarial drugs remains an essential tool for malaria prevention and control, which requires 

the identification and evaluation of new therapeutic targets. 

 

Computational approaches are the most appropriate for predicting therapeutic candidates in a 

reasonable time and at a lower cost. 

 

Computer-aided Drug Design to Accelerate the Drug Discovery Process 

Drug discovery and development (DD&D) is a lengthy and complex process that takes around 12–

15 years and costs multiple millions of dollars for a drug to reach the market [8]. Interdisciplinary 

DD&D begins with the identification and validation of a suitable drug target, followed by a hit to lead 

discovery and optimization, and finally preclinical and clinical studies. Despite the huge investments 

and time incurred for the discovery of new drugs, the success rates are so low that only five out of 

10,000 compounds make their way to reach human testing after preliminary evaluation in animals and 

only one of five of these compounds reaches final clinical studies. Further, a majority (40–60%) of the 

drug failure has been observed at a later stage of the DD&D process due to a lack of optimal 

pharmacokinetic properties, that is, absorption, distribution, metabolism, excretion, and toxicity 

(ADME/Tox). This all suggested and urged the need to develop new methodologies to facilitate and 

expedite the DD&D process [1]. 

 

Several computational methods can assist researchers in the identification and search for new drug 

candidates. These in-silico procedures include: virtual screening [9], 3D-QSAR (Three-Dimensional 

Quantitative Structure-Activity Relationship) [10], molecular dynamics simulations [11] and ADMET 

property prediction [12]. 

 

Two techniques are particularly useful for inhibitor prediction: 

 

ligand-based drug discovery and structure-based drug discovery. 

 

Ligand-based drug discovery (LBDD) refers to drug discovery efforts in absence of any target 

structures and in presence of chemical structures known to modulate the target [13]. 

 

Computational structure-based drug discovery (SBDD) methods simulate how potential ligands 

may interact with the putative binding site (target) under study [14]. 

 

The ultimate goal of SBDD is to rank known or de novo designed chemicals according to desired 

biological activity and, more importantly, to translate computer generated hypotheses into feasible 

experimental steps. In this work we have used structure-based drug discovery to identify PSD 

inhibitors. 

 

Here we consider Phosphatidylserine decarboxylase (PSD) as a therapeutic target of Plasmodium 

(P.) falciparum. This protein is member of the lyase family, more specifically the carboxy-lyases, 
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which cut carbon-to-carbon bonds. PSDs catalyze the decarboxylation of phosphatidylserine to 

generate phosphatidylethanolamine, a critical step in phospholipid metabolism in prokaryotes and 

eukaryote [15]s. Most PSDs are membrane bound. An integral component of the mitochondrial inner 

membrane, PSD plays a central role in phospholipid metabolism and in the inter-organism trafficking 

of phosphatidylserine. PSD is strongly expressed during the intraerythrocytic stage of the Pf life cycle 

(80–100%), one of the criteria for TDR target selection. This intraerythrocytic phase constitutes the 

symptomatic phase of the disease, with massive destruction of erythrocytes and sometimes adherence 

to blood vessels of large organs like the brain, thus restricting the blood flow with serious 

consequences [16]. The high expression of this protein at this stage of the parasite life cycle makes it a 

good therapeutic target. 

 

To our knowledge the three-dimensional (3D) structure of PSD has not been structurally 

characterized. For this reason, the present study aims to characterize the PSD 3D structure and to 

identify inhibitors for this promising new therapeutic target for Pf malaria. 

 

METHODS 

The Tropical Disease Research (TDR) Targets database (TDRtargets.org) is an open-access 

resource that facilitates the identification and prioritization of drugs and drug targets of neglected 

pathogens according to specific criteria [17]. This resource facilitates the prioritization of drug targets 

for major tropical disease pathogens, particularly malaria. The TDR Targets database was used for 

this study to establish a list of therapeutic targets. From this list, a single target was selected and 

retained that best satisfied the validation criteria for the therapeutic target, this is the 

Phosphatidylserine decarboxylase. The studies focused on the intra-erythrocytic stage [5]. 

 

Sequence Retrieval 

The target protein for this study was Phosphatidylserine decarboxylase (PSD) with Universal 

Protein Resource (UniProt) accession number Q8I2N0_PLAF7. The sequence of the target protein 

was extracted from Uniprot database (www.uniprot.org) [18] using the search term 

“Q8I2N0_PLAF7”. This protein includes 353 amino acid residues in FASTA format. 

 

Human Orthology Search 

The orthology search was performed using the OrthoDB [19], eggnog [20] and KEGG databases 

[21]. Sequences of the human orthologs were retrieved from the UNIPROT database with accession 

number “Q9UG56”. After a multiple alignment with clustalW [22], the closest ortholog was 

identified. The PSD structure was compared with its ortholog structure using Template Modeling 

score (TM scores) [23]. 

 

Subcellular Localization and Solubility Prediction 

The subcellular location of PSD protein was predicted by ESLpred 

(https://webs.iiitd.edu.in/cgibin/eslpred/eslpred.pl) [24], SOSUI (http://harrier.nagahama-i-

bio.ac.jp/sosui/) [25] calculates average hydrophobicity and determines the solubility of the protein. 

 

Model Construction 

The 3D structures of the target proteins were built using AlphaFold2 (https://AlphaFold2.ebi.ac.uk/) 

[26]. Structure visualization was done with Chimera [27] and Pymol [28]. 

 

Quality Assessment 

The evaluation and validation of the quality of the models was done with the tools: ERRAT [29], 

Procheck [30], verify 3D [31] included in the SAVESv6.0 server (https://saves.mbi.ucla.edu/) [32]. 

 

Active Site Determination 

PrankWeb is an online resource providing an interface to P2Rank, a state-of-the-art method for 

http://www.uniprot.org/
http://harrier.nagahama-i-bio.ac.jp/sosui/
http://harrier.nagahama-i-bio.ac.jp/sosui/
https://alphafold.ebi.ac.uk/
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ligand binding site prediction. P2Rank is a template-free machine learning method based on the 

prediction of local chemical neighborhood ligandability centered on points placed on a solvent-

accessible protein surface. Points with a high ligandability score are then clustered to form the 

resulting ligand binding sites. It was used to identify the binding pockets of our ligands to the target 

protein [20]. Pocket 1 was identified as the most promising. 

 

Computational platform 
All computational analyses were performed on Linux 20.04 using HP computer 

 
Processor Intel(R) Core (TM) i7-10750H CPU@ 2.60GHz 2.59GHz, RAM memory 32.0 GB, 

Operating system 64 bit, Processorx64. 

 

Virtual Screening 

Receptor Preparation 

The target protein structure (PSD) obtained from the AlphaFold2 server in pdb format was loaded 

into AutoDock Tools (ADT). It was treated by adding hydrogen and Kollman charges, and then 
converted to pdbqt format by AutoDock Tools (ADT) [33]. 

 

Ligand Preparation 

The ligands in sdf format were extracted from the Zinc virtual chemical library [21] of Food and 
Drug Administration (FDA) approved molecules according to Drugbank [22]. The present study aims 

to contribute to the acceleration of antimalarial drug development efforts by exploring the potential of 
existing FDA-approved drugs by targeting a promising therapeutic target, Phosphatidylserine 

decarboxylase from Plasmodium falciparum. Energy minimization was performed on Ubuntu using 
the MMFF94 force field [34], a total of 1615 molecules in sdf format were converted to pdbqt format 

in command line using Open Babel [35]. 
 

Multiple Ligand Docking 
Virtual screening was performed using Autodock Vina [36]. 

 
The grid was generated using the grid generation module included in the autodock tool. The grid 

box was adjusted to cover the catalytic site residues of the PSD target protein. 

 
Finally, a conf.txt file was created, this file includes the receptor in *. pdbqt format, the center of 

the grid with x,y,z coordinates in Å obtained from Prankweb server, the grid size in Å, and a docking 
run number 10. 

 

ADMET analysis 

The SMILES structures of the compounds with the best binding energies were extracted from the 
Zinc database. Prediction of absorption, distribution, metabolism, elimination and toxicity (ADMET) 

was performed using the Swiss-ADME server (http://www.swissadme.ch/) [37]. 
 

The 10 compounds with the lowest binding energies and compliance with Lipinski's rule of 5 were 
selected as potential PfPSD inhibitors [38]. 

 

Protein-ligand Interaction Study 

Protein-ligand interaction studies were carried out with Discovery studio between the top ten (10) 
ligands and the PfPSD target protein [39]. The top ten (10) ligands selected for interaction studies 

were those with the best binding energies and best compliance with Lipinski's rule of 5. 

 

RESULTS 

Human Orthology Research 
The orthology search performed with the OrthoDB, eggNoG and KEGG databases allowed us to 

http://www.swissadme.ch/)
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identify Phosphatidylserine decarboxylase proenzyme, mitochondrial (PISD_HUMAN), Homo 
sapiens with UniProt access code Q9UG56 as the closest human orthologue to our target protein with 

an identity score of 26.0623% obtained through a multiple sequence alignment performed with 
clustalw. The 3D structure of the orthologue was determined with Alphafold2 (Q9UG56). The 

comparison of the structure of PfPSD with its human orthologue (Q9UG56) was done with the 
TMscore and gave us 0.13 as similarity score [40]. 

 
The criteria were: 0.0 < TM-score < 0.17, random structural similarity 

0.5 < TM-score < 1.00, in about the same fold. 

This suggests that the two proteins are not similar and reinforces our approach since one of the 
basic criteria for a protein to be considered as a good therapeutic target is that it must not have a 
human orthologue. 

 

Solubility Prediction and Subcellular Localization 
The subcellular localization of the target protein (PfPSD) was predicted using ESLpred [13] and 

allowed us to identify Phosphatidylserine decarboxylase as a mitochondrial protein with precision 
scores: 

 Reliability Index: 1  

 Expected Accuracy: ~53 
 
SOSUI server [14] analysis shows that Phosphatidylserine decarboxylase is a soluble protein, 

hydrophobic and with positive charge as shown in Figure 1. 
 

Hydrophobicity 

 
 

Net Charge Density 

 
Figure 1. Hydrophobicity and Charge plot. 
 

PSD Structure Prediction with AlphaFold2 server v2.1.0 
Panel A shows the best AlphaFold2 predicted structure with alpha-helix in yellow and beta-sheet in 

green. It was chosen for the next part of the study. Panel B displays the Local Distance Difference 
Test (lDDT). It evaluates the local distance differences of all atoms of a model. The model 1 
represented on the B panel by blue plot shows a high score around 80. Panel C is the predicted aligned 
error (PAE) plot from the AlphaFold2 server and shows the expected position error at residue x if the 
predicted and actual structures are aligned to residue y (using Cα, N and C atoms). This Figure 2 
shows that all parts of the structure are predicted to be well-correlated with each other, other than the 
N-terminal region 

 

Validation of the 3D Model of Phosphatidylserine Decarboxylase 
Several tools were used to validate the 3D model of Phosphatidylserine Decarboxylase. In 

particular: 
 
The PROCHECK server was used to evaluate the structural quality of the modeled structure, in 

fact, Procheck verifies the stereochemical quality of the structure of a protein by analyzing the 
geometry residue by residue and the global geometry of the structure. Procheck's evaluation of the 
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predicted model of Phosphatidylserine decarboxylase showed that 91.3% of the residues were in 
favored regions while a good quality model should have more than 90% of the residues in the most 
favored region in the Ramachandran plot. We can therefore say that our structure is of high quality. 

  

 
Figure 2. P.f PSD 3D structure Prediction and evaluation with AlphaFold2 server v2.1.0. 

 

VERIFY 3D determines the compatibility of an atomic (3D) model with its own amino acid 

sequence (1D) by assigning it a structural class based on its location and environment (alpha, beta, 

loop, polar, non-polar, etc.) and comparing the results to the correct structures. The evaluation of the 

quality of the model of our target protein by 3D verification showed that 86.41% of the residues have 

an average 3D-1D score >= 0.2. We can therefore conclude that our protein is of high quality. 

 

ERRAT analyzes the statistics of non-bonded interactions between different types of atoms and 

plots the value of the error function as a function of the position of a sliding window of 9 residues, 

calculated by comparison with the statistics of highly refined structures. The analysis of the structure 

of Phosphatidylserine decarboxylase by ERRAT showed an overall quality score of 97.3333% which 

clearly exceeds the average which is around 95%. We can say that the structure of our protein has a 

very high resolution. The Table 1 given below represents Assessment of Phosphatidylserine 

decarboxylase model quality 

 

Table 1. Assessment of Phosphatidylserine decarboxylase model quality 

Target Protein Ramachandran Plot Statistics (%)  ERRAT VERIFY3D 

Core Allowed General Disallowed Quality Factor Compatibility Score (%) 

PSD 91.3% 8.3% 0.4% 0.0% 97.3333 86.41% 

 

Binding Site Identification 

The exploration of the surface structure of the target protein and the identification of the binding 

pockets were carried out with Prank web server [41]. The coordinates of pocket 1 considered as the 

most promising were used to generate the Grid Box. 

A 

B 

C 
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These coordinates were: Center X coordinate: 11.6659, Center y coordinate: 0.9370, Center z 

coordinate: -1.5817 

Virtual Screening 

Virtual screening was performed using autodock_vina [42] from the Zinc15 DB virtual chemical 

library [43] using FDA approved molecules [44]. A total of 1615 FDA-approved molecules were used 

for the virtual screening, from which we selected the 10 best scoring ones with the lowest energies 

and best compliance with Lipinski's rule of 5. These results are shown in Table 2. 

 

These top 10 ligands were used to perform the virtual screening with the ortholog (PISD_HUMAN) 

using autodock-vina with the same parameters, the goal being to find out whether or not the ligands 

have the same binding sites to the orthologue. This results are shown in Table 2. 

 

After the virtual screening, the two structures were superimposed and visualized with chemera X 

(Q8I2N0_PLAF7, Q9UG56) to see the position of ligands in the different pockets. We found that the 

docked ligands were in different pockets as shown in Figure 3, which supports our approach. Results 

of the virtual screening of the human orthologue with the 10 best ligands are given in Table 3. 

 

ADMET Analysis 

The evaluation of the absorption, distribution, metabolism, excretion, and toxicity (ADMET) made 

with the SwissADME [37] servers allowed us to identify the following inhibitors considered as the 

most promising and respecting Lipinski’s rule of 5. In total 10 potential inhibitors were selected. 

Table 4 show the ADMET properties 

 

Table 2. The top 10 compounds with the lowest energies and that most respect Lipinski's rule of 5 

Target Proteins Compound ID’s Compound Names Molecular formula Docking Score 

(kcal/mol) 

Phospatidylserine 

Decarboxylase 

ZINC11679756 Eltrombopag C25H22N4O4 -8.8 

ZINC100016084 Trospium C25H30NO3+ -8.5 

ZINC3920266 Idarubicin C26H27NO9 -8.5 

ZINC897301 Anzemet C19H20N2O3 -8.5 

ZINC40430143 Olaparib C24H23FN4O3 -8.4 

ZINC30691797 Perampanel C23H15N3O -8.4 

ZINC1481815 Exjade C21H15N3O4 -8.4 

ZINC43207238 Canagliflozin C24H25FO5S -8.4 

ZINC12503068 Trosec C25H30NO3+ -8.4 

ZINC2568036 Dantrolene C14H10N4O5 -8.3 

 

Table 3. Results of the virtual screening of the human orthologue with the 10 best ligands 

Target Proteins Compound ID’s Compound Names Molecular formula Docking Score 

(kcal/mol) 

Phospatidylserine 

Decarboxylase 

(Q8I2N0_PLAF7) 

ZINC3920266 Idarubicin C26H27NO9 -9.4 

ZINC40430143 Olaparib C24H23FN4O3 -8.9 

ZINC11679756 Eltrombopag C25H22N4O4 -8.7 

ZINC43207238 Canagliflozin C24H25FO5S -8.6 

ZINC1481815 Exjade C21H15N3O4 -8.4 

ZINC30691797 Perampanel C23H15N3O -8.1 

ZINC100016084 Trospium C25H30NO3+ -7.6 

ZINC2568036 Dantrolene C14H10N4O5 -7.6 

ZINC12503068 Trosec C25H30NO3+ -7.6 

https://zinc15.docking.org/substances/ZINC000011679756/
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ZINC897301 Anzemet C19H20N2O3 -7.2 

 

Superposition of the 3D Structures of PfPSD and PISD_HUMAN 

 

The configuration shows Pf-PSD in green with orange ligand and PISD_HUMAN in cyan with red 

ligand. Perampanel and XZ have protein structures that bind in opposite pockets. 

 
Figure 3. Superposition of the structure of Pf-PSD in green with docked ligands in orange and 

PISD_HUMAN structure in cyan with the docked ligands in red. The best view was obtained with the 

ligands (Perampanel, Exjade) distributed in opposite binding pockets of the protein structures (Pf PSD 

and Human PSD) 

 

Table 4. Druglikeness predictions of the top 10 compounds 

Compound 

Names 

Molecula r 

Weight (g/mol) 

Number of H-

bond acceptors 

Number of H-

bond donors 

LOGP Rotatable 

Bonds 

Lipinski's rule of 

5 violation 

Eltrombopag 442.47 6 3 3.74 5 0 

Trospium 392.51 3 1 1.69 5 0 

Idarubicin 497.49 10 5 1.14 3 0 

Anzemet 324.37 4 1 2.34 3 0 

Olaparib 434.46 5 1 2.78 6 0 

Perampanel 349.38 3 0 3.71 3 0 

Exjade 373.36 6 3 3.07 4 0 

Canagliflozin 444.52 6 4 3.27 5 0 

Trosec 444.52 6 4 3.27 5 0 

Dantrolene 314.25 7 1 1.06 4 0 
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2D Structure of Potential PSD Inhibitors 

Figure 4 below shows the 2D structure of the top 10 ligands with the lowest energies and best 

compliance with Lipinski's 5 rule. 

 
Figure 4. 2D structures of the 10 PSD potential inhibitors. 

 

Protein-ligand Interaction 

The protein-ligand interaction studies carried out with discovery studio between the 10 promising 

ligands and the PfPSD target protein identified the key residues involved in these interactions given in 

Figure 5. 

 

The different kinds of bond involved in these interactions are legended at the bottom of the figure. 

 
Protein-ligand complex 2D interactions 
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Figure 5. (a) Pf Phospatidylserine Decarboxylase and Eltrombopag (ZINC11679756). 

 
Figure 5. (b) Pf Phospatidylserine Decarboxylase and Tropism (ZINC100016084).  

 

https://zinc15.docking.org/substances/ZINC000011679756/


 

Research & Reviews: Journal of Computational Biology 

Volume 12, Issue 2 

ISSN: 2319-3433 (Online), ISSN: 2349-3720 (Print) 

 

© JournalsPub 2023. All Rights Reserved 70  
 

 
Figure 5. (c) Pf Phospatidylserine Decarboxylase and Idarubicin (ZINC3920266). 
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Figure 5. (d) Pf Phospatidylserine Decarboxylase and Anzemet (ZINC897301) 

 

 
Figure 5. (e): Pf Phospatidylserine Decarboxylase And Olaparib (ZINC40430143). 
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Figure 5. (f) Pf Phospatidylserine Decarboxylase And Perampanel (ZINC30691797). 

 

 
Figure 5. (g) Pf Phospatidylserine Decarboxylase and Exjade (ZINC1481815). 
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Figure 5. (h) Pf Phospatidylserine Decarboxylase and Canagliflozin (ZINC43207238). 

 

 
Figure 5. (i) Pf Phospatidylserine Decarboxylase and Trosec (ZINC12503068). 
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Figure 5. (j) PfPhospatidylserine Decarboxylase and Dantrolene (ZINC2568036). 

 

  
 : Conventional Hydrogen Bond 

 
: Pi-Alkyl 

  : Pi-Pi Stacked 

  : Carbon Hydrogen Bond 

  : Pi-Pi T-shaped 

 
: Pi-Anion 

Figure 5: Represent the interaction between top 10 ligands and the target protein (PfPSD). 

 

DISCUSSION 

This study allowed us to identify PSD as a promising therapeutic target of Plasmodium falciparum, 

to propose its 3D structure, never realized before and to identify its potential inhibitors. 

 

From 1615 compounds extracted from the zinc database of FDA approved molecules after virtual 

screening and toxicity and druggability studies we have selected 10 as having the best chance to be 

good antimalarial drug candidates. 

 

We also performed interaction studies between the target protein (PfPSD) and these 10 potential 

inhibitors. The following residues were identified as being involved in the various interactions. 

PfPSD and Eltrombopag (ZINC11679756): ARG 71, ASN258, LYS 260, LEU 267, LEU 268, 

ARG 67, ASN270; 

Pf PSD and Tropism: ALA 253, ASN 255, PHE 218, PRO 216, PRO 190; 

Pf PSD and Idarubicin: ASP 112, SER 115, LYS 304, LYS 108; 

Pf PSD and Anzemet: TYR 187, ASN 255; 

Pf PSD and Olaparib: PRO 190, ALA 253, PHE 218; 
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Pf PSD and Perampanel: PHE 61, VAL 217, ALA 253, PRO 216, PRO 190, PHE 114, VAL 305; 

Pf PSD and Exjade: PHE 73, ASN 255, PRO 216, PRO 190; 

Pf PSD and Canagliflozin: GLY 306, PRO 190, PHE 73, PHE 89; 

Pf PSD and Trosec: TYR 187, PRO 190, ALA 253, PHE 114, PRO 216; 

Pf PSD and Dantrolene: VAL 217, PRO 216, ALA 253, ASN 255, THR 69. 

Different kinds of binding were observed through these interactions: Conventional Hydrogen Bond, 

Pi-Alkyl, 

 

Pi-Pi Stacked, Carbon Hydrogen Bond, Pi-Pi T-shaped, Pi-Anion. The results of this study provide 

a solid basis for drug discovery against Pf. 

 

Similar studies have been done with Trisha Rajguru et al.,2022 who chose Falcipain-2 (FP-2) as a 

promising therapeutic target of Pf and from 800 compounds extracted from the Pubchem database 

after virtual screening and molecular dynamics studies, they retained 4 potential inhibitors of this 

target [45]. 

 

Rufus Afolabi et al.,2022 also conducted a related study using a machine learning approach to 

predict appropriate drug targets in Pf. They established a list of 5 protein targets that they considered 

as potential drug targets because they had no human homologues. From these, they determined the 

physicochemical properties, predicted the 3D structure and performed a virtual screening based on the 

docking of the putative Pf RNA pseudouridylate synthase ( Pf RPuSP). At the end of their studies 

from 5261 compounds extracted from the Pubchem database after virtual screening, toxicity and 

protein ligand interaction studies, they selected 11 compounds as candidates for malaria treatment 

[46]. 

 

We proposed Phosphatidylserine decarboxylase as a promising therapeutic target of Plasmodium 

falciparum extracted from TDRtargets.org [9] which facilitates the identification and prioritization of 

drugs and drug targets of neglected pathogens according to specific criteria. 

 

This protein is a member of the lyase family, specifically carboxy-lyases, which cut carbon-carbon 

bonds. Phosphatidylserine decarboxylases (PSD) catalyze the decarboxylation of phosphatidylserine 

to generate phosphatidylethanolamine, a critical step in phospholipid metabolism in prokaryotes and 

eukaryotes. It is expected to localize at the mitochondrial membrane. Moreover, Phosphatidylserine 

decarboxylase is strongly expressed during the intraerythrocytic phase of the life cycle of Plasmodium 

falciparum (80–100%), one of the criteria for the choice of the TDR target. However, this phase 

constitutes the symptomatic phase of the disease, with massive destruction of erythrocytes and 

sometimes adhesion to the blood vessels of large organs such as the brain, thus limiting the blood 

flow with serious consequences [5]. 

 

This high expression of Phosphatidylserine decarboxylase at this stage of the parasite life cycle 

makes it a good therapeutic target. Also, orthology studies allowed us to understand that this protein 

has no close human orthologue, one of the basic criteria for a protein to be considered as a good 

therapeutic target. (Also, the ligands that were chosen are aleady FDA approved drugs, so human side 

effects are already well understood.) Preventing the function of this protein at this stage of the parasite 

life cycle by designing an effective inhibitor may be a good start in the fight against malaria. 

 

The first challenge in this work was to propose the 3D structure of this protein, which until now has 

no structure available in PDB, and then to identify its potential inhibitors. 
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At the end of this study we were able to propose a 3D structure of the target protein and identify 10 

inhibitors according to their ADMET properties and respecting the Lipinski rule of 5. 

CONCLUSION 
This study allowed to predict the 3D structure of Phosphatidylserine decarboxylase which 

previously didn't have a structure available in the Protein Databank (PDB) and to identify its potential 
inhibitors (ten inhibitors). 

 
We identified the 10 best ligands from their affinity scores and the evaluation of Adsorption, 

Distribution, Metabolism, Excretion and Toxicity. 
 

Interaction studies were performed to better understand the interactions between the target protein 
and the ligands. the next step in this study will be to perform molecular dynamics simulations to 

validate the structural stability of the selected ligands. Subsequently, in vitro and in vivo tests will be 
carried out to obtain an accurate analysis of the compounds' activity. 
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