Open Access Open Access  Restricted Access Subscription or Fee Access

A molecular docking study and in silico analysis: targeting the marburg virus protein vp35 using active phytocompounds from alchemilla vulgaris

Satavisha Ghorui

Abstract


Objective: The Marburg Virus Disease (MVD) is an infectious viral disease originating from African Fruit Bats (Rousettus aegyptiacus) that has become the root cause of a fatal hemorrhaging viral fever. As per reports from the WHO, MVD has claimed the lives of millions of people worldwide, with a disease fatality rate ranging from 24% in initial outbreaks to 88% in recent times owing to a difference in viral strains and epidemic management across countries. This study is an attempt to recognize the various biochemical characteristics of the phytocompounds present in Alchemilla vulgaris and document their extraordinary medicinal values as a possible source of herbal remedy to prevent or cure the Marburg Virus Disease.

Methodology: The main protein taken from the Marburg Virus for this study is the RNA binding domain VP35 protein (PDB ID: 4GH9). The 3D structure of the protein was taken from the PDB site, while the phytocompounds of Alchemilla vulgaris (133 in total) were derived from the PubChem database. After that, the protein was prepared by removing the water and heteroatom molecules, as well as ligands that showed poor binding sites. Then the molecular docking process was carried out using the PyRx tool. Finally, the drug-likeness and toxicity profiles of the top 3 best-docked phytocompounds were created through the Swiss-ADME tool, Boiled-Egg analysis, and ADMET Lab 2.0 web server.

Results: The Ramachandran Plot analysis predicted the possible conformations of the amino acid residues in the protein peptide through a graphical diagram of Phi (φ) v/s Psi (ψ) values. The results of the molecular docking process revealed that the top 3 phytocompounds of Alchemilla vulgaris showed significant binding affinities (>7 Kcal/mol) with the Marburg virus’s VP35 protein, thus conclusively preventing various biochemical processes such as proteolytic cleavage formation, and viral translation, transcription, and replication within the host cell. Additionally, the ADME profiling and toxicity prediction showed that all the top 3 phytocompounds, namely, Hypericin, Beta-Sitosterol, and Cholesterol were safe, possessing drug-like characteristics.

Conclusion: From the results of this study, it can be concluded that Hypericin, Beta-Sitosterol, and Cholesterol, the three ethnobotanical compounds of Alchemilla vulgaris, have significant finding affinity with the Marburg virus’s VP35 protein and have the potential to inhibit the development of the viral hemorrhaging fever MVD as an alternate source of its herbal remedy.

Keywords: Marburg, Marburg Virus Disease, MVD, VP35, Alchemilla vulgaris, Molecular Docking


Full Text:

PDF

References


Mehedi, M., Groseth, A., Feldmann, H., & Ebihara, H. (2011b). Clinical aspects of Marburg hemorrhagic fever. Future Virology, 6(9), 1091–1106. https://doi.org/10.2217/fvl.11.79

Ebola and Marburg | Disease Directory | Travelers’ Health | CDC. (n.d.). CDC.gov. https://wwwnc.cdc.gov/travel/diseases/ebola

Spickler, Anna. "Ebolavirus and Marburgvirus Infections" (PDF).

Singh, S. K., & Ruzek, D. (2016). Viral hemorrhagic fevers. CRC Press.

Shifflett, K., & Marzi, A. (2019). Marburg virus pathogenesis – differences and similarities in humans and animal models. Virology Journal, 16(1). https://doi.org/10.1186/s12985-019-1272-z

Sboui, S., & Tabbabi, A. (2017). Marburg Virus Disease: A Review Literature. Journal of Genes and Proteins, 1(1), 1–2. https://doi.org/10.4172/jgp1000101

Adjemian, J., Farnon, E. C., Tschioko, F., Wamala, J. F., Byaruhanga, E., Bwire, G., Kansiime, E., Kagirita, A., Ahimbisibwe, S., Katunguka, F., Jeffs, B., Lutwama, J. J., Downing, R., Tappero, J. W., Formenty, P., Amman, B. R., Manning, C., Towner, J. S., Nichol, S. T., & Rollin, P. E. (2011). Outbreak of Marburg hemorrhagic fever among miners in Kamwenge and Ibanda districts, Uganda, 2007. The Journal of Infectious Diseases, 204(suppl_3), S796–S799. https://doi.org/10.1093/infdis/jir312

Olejnik, J., Mühlberger, E., & Hume, A. J. (2019). Recent advances in marburgvirus research. F1000Research, 8, 704. https://doi.org/10.12688/f1000research.17573.1

Bamberg, S., Kolesnikova, L., Möller, P., Klenk, H., & Becker, S. (2005). VP24 of Marburg virus influences formation of infectious particles. Journal of Virology, 79(21), 13421–13433. https://doi.org/10.1128/jvi.79.21.13421-13433.2005

Ramanan, P., Edwards, M. R., Shabman, R. S., Leung, D. W., Endlich-Frazier, A. C., Borek, D., Otwinowski, Z., Liu, G., Huh, J., Basler, C. F., & Amarasinghe, G. K. (2012). Structural basis for Marburg virus VP35–mediated immune evasion mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20661–20666. https://doi.org/10.1073/pnas.1213559109

Quazi, S., Gavas, S., Malik, J. A., Suman, K. S., & Haider, Z. (2021). In-silico pharmacophore and Molecular Docking based drug discovery against Marburg Virus’s Viral Protein 35; A potent of MAVD. bioRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/2021.07.01.450693

Peterson, A. T., Lash, R. R., Carroll, D. S., & Johnson, K. M. (2006). GEOGRAPHIC POTENTIAL FOR OUTBREAKS OF MARBURG HEMORRHAGIC FEVER. American Journal of Tropical Medicine and Hygiene, 75(1), 9–15. https://doi.org/10.4269/ajtmh.2006.75.1.0750009

Ga, M., Hg, K., Ha, S., Mayer, G. D., & Baltzer, G. (1968b). Über eine bisher unbekannte, von Affen eingeschleppte Infektionskrankheit: Marburg-Virus-Krankheit. [On the hitherto unknown, in monkeys originating infectious disease: Marburg virus disease]. Deutsche Medizinische Wochenschrift, 93(12), 559–571. https://doi.org/10.1055/s-0028-1105098

World Health Organization (WHO). (2022, September 26). Disease Outbreak News; Marburg virus disease - Ghana. https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON409

Marburg (Marburg Virus Disease). (2023, June 9). Centers for Disease Control and Prevention (CDC). https://www.cdc.gov/vhf/marburg/index.html

US Department of Health and Human Services. (2007). Biosafety in Microbiological and Biomedical Laboratories (BMBL) 5th Edition. Scribd. https://www.scribd.com/document/67149189/BiosafetyMicroBiomedicalLab5th-2007

National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH). (n.d.). Biodefense Category A, B, and C Priority Pathogens. NIAID, NIH. https://web.archive.org/web/20111022004715/http://www.niaid.nih.gov/topics/biodefenserelated/biodefense/research/pages/cata.aspx

Bioterrorism Agents/Diseases. (2014, July 22). US Centers for Disease Control and Prevention (CDC). https://web.archive.org/web/20140722181901/http://www.bt.cdc.gov/agent/agentlist-category.asp

List of Biological Agents for Export Control. (2011, June). The Australia Group. https://web.archive.org/web/20110806112546/http://www.australiagroup.net/en/biological_agents.html

Díaz, L. X., Ortega, J. O., Lopez, K. a. L., García, I. V., & Gutierrez, J. L. C. (2019). 2526. Side Effects of Antiretroviral Therapy in Children with HIV in a Referral Center in Mexico. Open Forum Infectious Diseases. https://doi.org/10.1093/ofid/ofz360.2204

Leroy, E., Baize, S., & Gonzalez, J. P. (2011). Les fièvres hémorragiques à virus Ebota et arburg : l'actualite des filovirus [Ebola and Marburg hemorrhagic fever viruses: update on filoviruses]. Medecine tropicale : revue du Corps de sante colonial, 71(2), 111–121.

Chavan, S., Wanarase, S., & Sharma, S. (2022). In silico analysis and docking study of the active phyto compounds of moringa oleifera against Marburg virus VP35 protein. Innovare Journal of Science, 5–12. https://doi.org/10.22159/ijs.2022.v10i1.46218

Details for: Alchemilla vulgaris. (n.d.). Encyclopedia of Life (EOL). https://eol.org/pages/51620909

Alchemilla vulgaris - Lady’s Mantle. (n.d.). First Nature. https://www.first-nature.com/flowers/alchemilla-vulgaris.php

Plants of the World Online. (n.d.). Alchemilla vulgaris L. Plants of the World Online - Kew Science. https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:721079-1

What are the Uses and Health Benefits of Lady’s mantle (Alchemilla vulgaris)? (n.d.). Planet Ayurveda – Holistic Healing Through Herbs. https://www.planetayurveda.com/ladys-mantle-alchemilla-vulgaris

Alchemilla vulgaris - Lady’s Mantle. (n.d.). First Nature. https://www.first-nature.com/flowers/alchemilla-vulgaris.php

Kaya, B., Menemen, Y.-., & Saltan, F. (2012a, April). Flavonoids in the endemic species of Alchemilla L., (section Alchemilla L. subsection Calycanthum Rothm. Ser. Elatae Rothm.) from north-east black sea region in Turkey. Pakistan Journal of Botany, 44. https://www.researchgate.net/publication/286815558_Flavonoids_in_the_endemic_species_of_Alchemilla_L_section_Alchemilla_L_subsection_Calycanthum_Rothm_Ser_Elatae_Rothm_from_north-east_black_sea_region_in_Turkey 44. 595-597.

Boroja, T., Mihailović, V., Katanić, J., Pan, S., Nikles, S., Imbimbo, P., Monti, D. M., Stanković, N., Stanković, M., & Bauer, R. (2018). The biological activities of roots and aerial parts of Alchemilla vulgaris L. South African Journal of Botany, 116, 175–184. https://doi.org/10.1016/j.sajb.2018.03.007

Vlaisavljević, S., Jelača, S., Zengin, G., Mimica–Dukić, N., Berežni, S., Miljić, M., & Stevanović, Z. D. (2019). Alchemilla vulgaris agg. (Lady’s mantle) from central Balkan: antioxidant, anticancer and enzyme inhibition properties. RSC Advances, 9(64), 37474–37483. https://doi.org/10.1039/c9ra08231j

Lady Mantle – Ayurvedic Herbs. Indian Mirror. https://www.indianmirror.com/ayurveda/lady-mantle.html

Takır, S., Altun, İ., Sezgi, B., Süzgeç-Selçuk, S., Mat, A., & Uydeş-Doğan, B. S. (2015). Vasorelaxant and blood pressure lowering effects of alchemilla vulgaris: A comparative study of methanol and aqueous extracts. Pharmacognosy Magazine, 11(41), 163. https://doi.org/10.4103/0973-1296.149733

Ghédira, K., Goetz, P., & Jeune, R. L. (2012). Alchemilla vulgaris L.: Alchémille (Rosaceae). Phytothérapie, 10(4), 263–266. https://doi.org/10.1007/s10298-012-0719-9

Ivancheva, S.V., Nikolova, M.T., Tsvetkova, R., & Imperato, F. (2006). Pharmacological activities and biologically active compounds of Bulgarian medicinal plants.

O'Flynn N. (2006). Menstrual symptoms: the importance of social factors in women's experiences. The British journal of general practice : the journal of the Royal College of General Practitioners, 56(533), 950–957.

Saad, B., Azaizeh, H., Abu-Hijleh, G., & Саид, О. (2006). Safety of traditional Arab herbal medicine. Evidence-based Complementary and Alternative Medicine, 3(4), 433–439. https://doi.org/10.1093/ecam/nel058

Kiselova, Y., Ivanova, D., Chervenkov, T., Gerova, D., Galunska, B., & Yankova, T. (2006). Correlation between the In Vitro antioxidant activity and polyphenol content of aqueous extracts from bulgarian herbs. Phytotherapy Research, 20(11), 961–965. https://doi.org/10.1002/ptr.1985

Boroja, T., Mihailović, V., Katanić, J., Pan, S., Nikles, S., Imbimbo, P., Monti, D. M., Stanković, N., Stanković, M., & Bauer, R. (2018b). The biological activities of roots and aerial parts of Alchemilla vulgaris L. South African Journal of Botany, 116, 175–184. https://doi.org/10.1016/j.sajb.2018.03.007

"Bock, Jerome." Complete Dictionary of Scientific Biography. Encyclopedia.com: https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/bock-jerome . Retrieved May 26, 2023

“Breverton's Complete Herbal. Lady’s Mantle. Alchemilla (Vlaisavljević 2019) vulgaris.” Doctorlib. https://doctorlib.info/herbal/breverton-complete-herbal/12.html . Retrieved May 26, 2023.

“Plant Spotlight – Alchemilla – Lady’s Mantle”. Horticulture. Winterbourne House and Garden. University of Birmingham. Jul 10. https://www.winterbourne.org.uk/blog/2020/07/10/plant-spotlight-alchemilla-ladys-mantle/ Retrieved May 26, 2023.

Özbek, H., Açıkara, Ö. B., Keskin, İ., Kırmızı, N. İ., Özbilgin, S., Öz, B. E., Kurtul, E., Özrenk, B. C., Teki̇N, M., & Saltan, G. (2017). Evaluation of hepatoprotective and antidiabetic activity of Alchemilla mollis. Biomedicine & Pharmacotherapy, 86, 172–176. https://doi.org/10.1016/j.biopha.2016.12.005

Jarić, S., Mačukanović-Jocić, M., Djurdjević, L., Mitrović, M., Kostić, O., Karadžić, B., & Pavlović, P. (2015). An ethnobotanical survey of traditionally used plants on Suva planina mountain (south-eastern Serbia). Journal of Ethnopharmacology, 175, 93–108. https://doi.org/10.1016/j.jep.2015.09.002

Filippova, E. (2017). Antiviral Activity of Lady’s Mantle (Alchemilla vulgaris L.) Extracts against Orthopoxviruses. Bulletin of Experimental Biology and Medicine, 163(3), 374–377. https://doi.org/10.1007/s10517-017-3807-x

Šavikin, K., Zdunić, G., Menković, N., Živković, J., Ćujić, N., Tereščenko, M., & Bigović, D. (2013). Ethnobotanical study on traditional use of medicinal plants in South-Western Serbia, Zlatibor district. Journal of Ethnopharmacology, 146(3), 803–810. https://doi.org/10.1016/j.jep.2013.02.006

Vlaisavljević, S., Jelača, S., Zengin, G., Mimica–Dukić, N., Berežni, S., Miljić, M., & Stevanović, Z. D. (2019b). Alchemilla vulgaris agg. (Lady’s mantle) from central Balkan: antioxidant, anticancer and enzyme inhibition properties. RSC Advances, 9(64), 37474–37483. https://doi.org/10.1039/c9ra08231j

Quazi, S., Gavas, S., Malik, J. A., Suman, K. S., & Haider, Z. (2021b). In-silico pharmacophore and Molecular Docking based drug discovery against Marburg Virus’s Viral Protein 35; A potent of MAVD. bioRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/2021.07.01.450693

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res 2000;28:235-42. 19.

European Bioinformatics Institute. PDBsum Home Page. Cambridge: European Bioinformatics Institute. Available from: https://www.ebi.ac.uk/pdbsum

Kim, S., Chen, J., Cheng, T., Gindulytė, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. (2020). PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395. https://doi.org/10.1093/nar/gkaa971

McConkey, B. J., Sobolev, V., & Edelman, M. (2002). The performance of current methods in ligand–protein docking. Current Science, 83(7), 845–856. http://www.jstor.org/stable/24107087

Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334

O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1). https://doi.org/10.1186/1758-2946-3-33

Biovia, D.S. (2015) Discovery Studio Modeling Environment. Dassault Syst. Release, San Diego, 4. https://www.scirp.org/genericerrorpage.html

Wikipedia Contributors. ADME. Wikipedia, The Free Encyclopedia; 2022. https://en.wikipedia.org/w/index.php?title=ADME&oldid=1087865915

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1). https://doi.org/10.1038/srep42717

Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255

Daina, A., & Zoete, V. (2016). A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem, 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182

Zhu, W., Zhang, Z., He, S., Wong, G., Banadyga, L., & Qiu, X. (2018). Successful treatment of Marburg virus with orally administrated T-705 (Favipiravir) in a mouse model. Antiviral Research, 151, 39–49. https://doi.org/10.1016/j.antiviral.2018.01.011

Ramanan, P., Edwards, M. R., Shabman, R. S., Leung, D. W., Endlich-Frazier, A. C., Borek, D., Otwinowski, Z., Liu, G., Huh, J., Basler, C. F., & Amarasinghe, G. K. (2012b). Structural basis for Marburg virus VP35–mediated immune evasion mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20661–20666. https://doi.org/10.1073/pnas.1213559109




DOI: https://doi.org/10.37591/rrjocb.v13i2.3317

Refbacks

  • There are currently no refbacks.